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CHAPTER 9.  

Causality 

 

“In quantum mechanics... The fundamental equation is itself symmetrical 

under time reversal... However, despite this symmetry, quantum mechanics 

does in fact involve an important non-equivalence of the two directions of 

time. This appears in connection with the interaction of a quantum object 

with a system which with sufficient accuracy obeys the laws of classical 

mechanics… If two interactions A and B with a given quantum object occur 

in succession, then the statement that the probability of any particular result 

of process B is determined by the result of process A can be valid only if 

process A occurred earlier than process B.” p31 Landau and Lifshitz 

“Statistical Mechanics”. 

 

9.1 INTRODUCTION 

 

 If all the laws of mechanics and quantum mechanics are time reversal 

symmetric then clearly you cannot prove a time-asymmetric result like the Fluctuation 

Theorem.  In the first proof given by Evans and Searles in 1994 [15], this time 

symmetry was indeed broken but it was broken in such a natural way that many 

people who have analysed this proof fail to see where the time reversal symmetry is 

broken.  The assumption made was that processes are causal [115]. 

 We quote Landau and Lifshitz above (page 32). This is a statement of the 

Axiom of Causality at least as it applies to quantum mechanics.  It is used frequently 

in quantum mechanics but (unrecognized by Landau and Lifshitz) it is also required in 

classical mechanics and electrodynamics.  The equations of motion in classical (and 

quantum) mechanics are indifferent to the direction of time – Hamilton’s Action 

Principle shows this with great clarity.  However, mechanics on it own does not give 
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us enough information to predict experimental results.  We need to know initial or 

logically, final conditions.  When we model laboratory experiments we require initial 

conditions because this is precisely how the experiments are conducted and because 

initially, the final state of the system is generally not known.  Although we can mimic 

the effects of time flowing backwards (time decrementing) by applying a time 

reversal mapping to a set of phases, time nevertheless evolves in a positive sense.  

Indeed the need to use the time reversal mapping results from the fact that time only 

increases. 

 In the proof of the ESFT and the GCFT the probabilities of observing 

particular values of time integrals of the dissipation function or of the generalised 

work are computed from the probabilities of observing the initial states from which 

those sets of trajectories began:  f (Γ;0)dΓ .  We never used the probabilities of the 

endpoints; indeed had we done so we would have proved the anti-Fluctuation 

Theorem and an anti-Second Law [115].   

 The Axiom of Causality is so natural that people fail to observe that they 

have made this assumption.  Landau and Lifshitz failed to notice that it is constantly 

used in classical mechanics.  This is evidenced by the simple fact that Laplace 

transforms are only defined by (0,∞ ) time integrals rather than (−∞,∞)  time integrals 

as used for spatial Fourier transforms.  This in turn leads to memory functions rather 

than anti-memory functions.  For an extensive discussion of causality and 

thermodynamics see reference [115]. 

 The Transient Fluctuation Theorem and time dependent response theory are 

meant to model the following types of experiment.  One begins an experiment with an 

ensemble of systems characterised by some initial (often equilibrium) distribution 

function.  One then does something to the system (applies or turns off a field as the 

case may be) and one tries to predict what subsequently happens to the system. It is 

completely natural that we assume that the probability of subsequent events can be 

predicted from the probabilities of finding initial phases and a knowledge of 

preceding changes in the applied field and environment of the system.  
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 As we will soon see computer simulation provides a clear illustration of the 

fact that the equations of motion can be run forward or backwards. Those equations of 

motion are completely time-reversal symmetric. It is the use of causality to predict the 

outcomes of experiments that breaks the symmetry of time. 
 

Definition 

The future state of the system is computed solely from the probabilities of states of 

the system in the past.  This is called the Axiom of Causality. 

 It is logically possible to compute the probability of occurrence of present 

states from the probabilities of future events, but this seems totally unnatural.  Will 

the electric light begin to turn on now, because at some time in the (near) future, we 

will throw a switch that applies the necessary voltage?  A major problem with this 

approach is that at any given instant, the future states are generally not known! In 

spite of these philosophical and practical difficulties, we will explore the logical 

consequences of the (unphysical) Axiom of Anticausality. 

 We now show that if we derive Green-Kubo relations for the transport 

coefficients defined by anticausal constitutive relations, firstly, these anti-transport 

coefficients have the opposite sign to their causal counterparts and secondly, the 

system response starts to change before external fields are changed.  In an anticausal 

world it becomes overwhelmingly probable to observe final equilibrium microstates 

that evolved from Second Law violating nonequilibrium steady states.  Although this 

behaviour is not seen in the macroscopic world, anticausal behaviour is permitted by 

the solution of the time reversible equations of motion and we demonstrate, using 

computer simulation, how to find phase space trajectories which exhibit anticausal 

behaviour. 
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9.2 CAUSAL AND ANTICAUSAL CONSTITUTIVE RELATIONS 

 

 Consider the component of the linear response at time t1 , dB(t1) , of a system 

characterised by a response function L(t1,t2 ) .  The response is due to the application 

of an external force F , acting for an infinitesimal time dt2 (> 0) , at time t2 , could be 

written as, 
 
 δB(t1) = L(t1,t2 )F(t2 )δt2 .   (9.2.1) 

 

This is the most general linear, scalar relation between the response and the force 

components.  If the response of the system is independent of the time at which the 

experiment is undertaken (i.e. if the same response is generated when both times 

appearing in (9.2.1) are translated by an amount t: t2 → t2 + t, t1→ t1 + t , then the 

response function L(t1,t2 )  is solely a function of the difference between the times at 

which the force is applied and the response is monitored, 

 
 δB(t1) = L(t1 − t2 )F(t2 )δt2 .   (9.2.2) 

  

Definition 

The invariance of the response to time translation is called the assumption of 

stationarity.  Equation (9.2.2) does not in fact describe the results of actual 

experiments because it allows the response at time t1  to be influenced not only by 

forces in the past, F(t2 ) , where t2 < t1  but also by forces that have not yet been 

applied t2 > t1 [54].  We therefore distinguish between the causal and anticausal 

response components, 

 
 δBC (t1) ≡ +LC (t1 − t2 )F(t2 )δt2 , t1 > t2  (9.2.3a) 

 
 
 δBA (t1) ≡ −LA (t1 − t2 )F(t2 )δt2 , t1 < t2 .  (9.2.3b) 
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Later, we will prove that LC (t) = LA (−t) .  

 Considering the response at time t to be a linear superposition of influences 

due to the external field at all possible previous (or future) times gives, 

 

 BC (t) = LC (t − t1)F(t1)dt1−∞

t

∫   (9.2.4a) 

 

for the causal response and, 

 

 BA (t) = − LA (t − t1)F(t1)dt1t

+∞

∫ .  (9.2.4b) 

 

for the anticausal response. 
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9.3 GREEN-KUBO RELATIONS FOR THE CAUSAL AND 
ANTICAUSAL RESPONSE FUNCTIONS 

 

And if also the materialistic hypothesis of life were true, living creatures 

would grow backwards, with conscious knowledge of the future, but no 

memory of the past 

William Thomson, Nature, April 9, 1874, pp. 441-444. 
 
 To make this discussion more concrete we will discuss Green-Kubo relations 

for shear viscosity [16].  Analogous results can be derived for each of the Navier-

Stokes transport coefficients.  We assume that the regression of fluctuations in a 

system at equilibrium, whose constituent particles obey Newton's equations of 

motion, are governed by the Navier-Stokes equations.   

Definition 

We consider the wavevector dependent transverse momentum density, J⊥ (ky ,t)   

 
 J⊥ (ky ,t) ≡ pxi (t)e

ikyyi (t )

i
∑   (9.3.1) 

 

where pxi is the x-component of the momentum of particle i, yi  is the y-coordinate of 

particle i and ky  is the y-component of the wavevector. The (Newtonian) equations of 

motion can be used to calculate the rate of change of the transverse momentum 

density. They give, 

 

 

 

!J⊥ = iky[ pxi pyie
ikyyi

i
∑ + 12 yijFxij

1− eikyyij

ikyyiji, j
∑ eikyyi ]

≡ ikyPyx (ky ,t).
 (9.3.2) 

 

In this equation Fxij  is the x-component of the force exerted on particle i by particle j, 

yij ≡ yj − yi  and Pxy(ky ,t)  is the xy-component of the wavector dependent pressure 



 7 

tensor. For simplicity we assume the interparticle forces are simple pair interactions. 

For such systems (9.3.2) is exact. 

 We now consider the response of the pressure tensor to a strain rate,  !γ , 

applied to the fluid for t > 0 in the causal system and for t < 0 in the anticausal system.  

In the causal system the strain rate is turned on at t = 0 while in the anticausal system 

the strain rate is turned off at t = 0.  Since the pressure tensor is related to the time 

derivative of the transverse momentum current by (9.3.2) and the strain rate is related 

to the Fourier transform of the transverse momentum density by 

 
!γ (ky ,t) = −ikyJ⊥ (ky ,t) / ρ , the most general linear, stationary and causal constitutive 

relation can be written as,  
 

 
 
!J⊥ (ky ,t) =

−ky
2

ρ
ηC (ky ,t − s)

0

t

∫ J⊥ (ky , s)ds, t > 0  (9.3.3) 

 

where ηC  is the causal response function (or memory function) and ρ is the mass 

density.  The corresponding anticausal relation is, 
 

 
 
!J⊥ (ky ,t) =

ky
2

ρ
ηA (ky ,t − s)

t

0

∫ J⊥ (ky , s)ds, t < 0  (9.3.4) 

 

where ηA  is the anticausal “response” function.  Note that because t < 0, we find that 

the argument (t-s) in (9.3.4) is less than zero, and we are indeed exploring the 

response of the system at times less than zero, which is prior to the changes in the 

strain rate that occur at times greater than zero! 

 It is straightforward to use standard techniques to evaluate the Green-Kubo 

relations for the causal and anticausal shear viscosity coefficients.   

Definitions 

In the anticausal case it is important to remember that the usual Laplace transform,  
 
 

 
!F(s) ≡ F(t)e− st dt

0

+∞

∫ , t ≥ 0 , (9.3.5) 
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is inappropriate and needs to be replaced by an anti-Laplace transform, 
 
 F̂(s) ≡ F(t)est dt

−∞

0

∫ , t ≤ 0.   (9.3.6) 

 

(Note: 
 
F̂(s) = F(−t)e− st dt = ′!F (s)

0

∞

∫ , t ≥ 0,where ′F (t) ≡ F(−t) ).  We note that the 

anti-Laplace transform of a time derivative is  !̂F(s) = F(0)− sF̂(s)  and that the anti-

Laplace transform of a convolution is the product of the anti-Laplace transforms of 

the convolutes.  By multiplying both sides of equations (9.3.3) and (9.3.4) by 

J⊥ (−ky ,0)  and taking an (equilibrium) ensemble average, one can easily derive the 

following relations for the shear viscosity and the anticausal shear viscosity, 
 

 

 

!C(ky , s) =
C(ky ,0)

s +
ky
2 !ηC (ky , s)

ρ

,  (9.3.7a) 

 

 Ĉ(ky , s) =
C(ky ,0)

s +
ky
2η̂A (ky , s)

ρ

 (9.3.7b) 

 

where 
 
 C(ky ,t) ≡ J⊥ (ky ,t)J⊥ (−ky ,0) , ∀t . (9.3.8) 

 

More useful relations for the viscosity coefficients, especially at k = 0, can be 

obtained by utilising the equilibrium stress autocorrelation function, 
 

 N(ky ,t) ≡
1

VkBT
Pyx (ky ,t)Pyx (−ky ,0) , ∀t . (9.3.9) 

 

Using the fact that  N̂ = − !!̂C / ky
2VkBT , one can show [16, 55], 

 

 
 
!ηC (ky , s) =

!N(ky , s)
1− ky

2 !N(ky , s) / ρs
,  (9.3.10a 

 η̂A (ky , s) =
N̂(ky , s)

1− ky
2N̂(ky , s) / ρs

.  (9.3.10b) 
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At zero wavevector, we find that the causal and anticausal memory functions are both 

given by the equilibrium autocorrelation function of the pressure tensor, 
 

 

ηC (t) =ηA (−t), where t > 0

≡ η(t), ∀t

= V
kBT

Pyx (t)Pyx (0)

 (9.3.11) 

 

where we have used Pyx (t)V = lim
k→0

Pyx (ky ,t) .  Since equilibrium autocorrelation 

functions are symmetric in time, one does not have to distinguish between the positive 

and negative time domains.  This proves our assertion made in §9.2 that 

LC (t) = LA (−t) .   

 Using equations (6.3.2)–(6.3.4) and taking the zero wavevector limit, we 

obtain the causal response of the xy-component of the pressure tensor, 

 

 
 
PyxC (t) = − η(t − s) !γ (s)ds

0

t

∫ t > 0  (9.3.12) 

 

and the anticausal response is, 
 
 

 
PyxA(t) = η(t − s) !γ (s)ds

t

0

∫ t < 0 . (9.3.13) 

 

In the linear regime close to equilibrium the instantaneous dissipation function, Ω(t) , 

is given by, 
 
  Ω(t) = −βPyx (t) !γ (t)V , (9.3.14) 
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where  !γ (t)  is the time dependent strain rate.  From equations (9.3.12) and (9.3.13), it 

is easy to see that if we conduct two shearing experiments, one on a causal system 

with a strain rate history  !γ C (t)  and one on an anticausal system with  !γ A(t) = ± !γ C (−t) , 

then  
 
 ΩA(t) = −ΩC (−t) . (9.3.15) 
 

This proves that if the causal system satisfies the Second Law of Thermodynamics 

then the anticausal system must violate that Law and vice versa. If we now invoke the 

Second Law Inequality we see the following: 

 

 ds
0

t

∫ ΩA(−s) = − ds
0

t

∫ ΩC (s) ≤ 0, ∀t > 0  . (9.3.16) 

 

Definition 

Equation (9.3.16) is the AntiSecond Law Inequality. 
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9.4 EXAMPLE: THE MAXWELL MODEL OF VISCOSITY 

 

 In this section we examine the consequences of the causal and anticausal 

response by considering the Maxwell model for linear viscoelastic behaviour [16]. If 

we consider the causal response of a system to a two step strain rate ramp: 
 

 
 

!γ C (t) = a 0 < t < t1
!γ C (t) = b t1 < t < t2

  (9.4.1) 

 

then use the Maxwell memory kernel, 
 
 ηM (t) = G∞e

− t /τM , ∀t   (9.4.2) 

 

in (9.3.12) and the fact that the causal, ηC , and anticausal, ηA , Maxwell shear 

viscosities in the zero frequency limit are 
 
 ηC =ηA = G∞τM =ηM ,  (9.4.3) 

 

we find that the causal response is: 
 
 PxyC (t) = −aη(1− e− t /τM ), 0 < t < t1   

 
 PxyC (t) = −aη(e−(t−t1 )/τM − e− t /τM )− bη(1− e−(t−t2 )/τM ), t1 < t < t2 . (9.4.4) 

 

If we now consider the corresponding anticausal experiment with strain rate histories 

given by: 
 

 
 

!γ A(t) = a −t1 < t < 0
!γ A(t) = b −t2 < t < −t1

.  (9.4.5) 

 

We find that the anticausal response is: 
 
 PxyA (t) = aη(1− e

t /τM ), − t1 < t < 0  
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 PxyA (t) = aη(e
(t+t1 )/τM − et /τM )+ bη(1− e(t+t2 )/τM ), − t1 < t < −t2 . (9.4.6) 

 

From equations (9.4.4) and (9.4.6) it is clear that, 
 
 PxyA (t) = −PxyC (−t) .  (9.4.7) 

 

These response functions are shown graphically in figure 9.4.1.  A two step strain rate 

ramp with a = 1.0, b = 0.5, t1= 2 and t2 = 4 was considered.  Equations (9.4.4) and 

(9.4.6) were used to predict the causal and anticausal responses, respectively, of the 

xy-component of the pressure tensor.  Values of G∞  = 40.0 and t = 0.05 were used in 

the model.  These values were obtained from approximate fits to computer simulation 

data (see §6.5). 

 The data in figure 9.4.1 show that for the causal response, Pxy  is zero at 

equilibrium (t ≤ 0) and decreases when the field is applied until the steady state value 

is obtained.  It remains at the steady value until t = 2, at which time the strain rate is 

reduced.  Since this system is causal, no change in Pxy  occurs until after the strain rate 

is reduced, when it increases until the system reaches a new steady state.  We display 

the anticausal response from t = -4 where it is in an antisteady state.  Just before the 

strain rate is increased (at t = -2), Pxy  increases to a new antisteady state value.  Using 

equation (9.3.14) we see that in the causal response dissipation is in the graph always 

positive and Second Law satisfying, whereas in the anticausal response the 

instantaneous dissipation is in this graph always negative. 
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Figure 9.4.1  A schematic diagram of the (a) causal and (b) anticausal response of Pxy  
to a two step strain rate ramp determined using the Maxwell model for linear 
viscoelastic behaviour with G∞  = 40 and τM = 0.05 (solid line).  In both cases the 
time dependence of the strain rate is shown as a dashed line.
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9.5  PHASE SPACE TRAJECTORIES FOR ERGOSTATTED 
SHEAR FLOW 
 

 We now examine the causal and anticausal response on a microscopic scale 

and we consider the relative probability of observing Second Law satisfying and 

Second Law violating trajectories by studying a ergostatted system of N particles 

under shear.   

 The ergostatted SLLOD equations of motion (2.3.1), (2.3.3) are time 

reversible [16].  Therefore for every i-segment   S
tΓ(i ) , (0 < t < τ), there exists a 

conjugate trajectory segment 
 
StΓ

(i(K ) )
,(0 < t < τ )  with the property that, 

 
Pxy(S

tΓ
(i(K ) )

) = −Pxy(S
− tΓ(i ) ),(0 < t < τ ) .  Thus, the t-averaged shear stress 

 
Pxy,i,t ≡ 1t ds

0

t

∫ Pxy(S
sΓi )   for segment i is equal and opposite to that for its conjugate: 

P
xy,iK ,t

= −Pxy,i,t .  We note that since the solution of the equations of motion is a unique 

function of the initial conditions the conjugate segment is also unique. 

 We have previously shown that for shear flow conjugate segments may be 

generated by using a phase space mapping known as a Kawasaki- or K-map [16].  A 

K-map of a phase, Γ , is defined as a time-reversal map which is followed by a y-

reflection.  In the case of shear flow the K-map leaves the strain rate unchanged but 

changes the sign of the shear stress, that is 

 M
KΓ = MK (x, y, z, px , py , pz ) = (x,−y, z,− px , py ,− pz ) ≡ Γ

(K ) [16].  It is straightforward 

to show that the Liouville operator for the system simulated by equations (2.3.1) and 

(2.3.3) ,   iL(Γ, !γ ) ≡ !qi (Γ,γ ) i ∂/ ∂qi + !pi (Γ, !γ ) i ∂/ ∂pi[ ]∑ , has the property that under a 

K-map,   M
(K )iL(Γ, !γ ) = iL(Γ(K ), !γ (K ) ) = −iL(Γ, !γ )M (K ) .  If we assume a strain rate 
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history such that,  !γ K (−t) = !γ (t) ∀t , then it follows that if a K-map is carried out on 

an arbitrary phase, Γ  at t = 0 then evolution forward in time from Γ (K) under a strain 

rate  !γ K (t)  is equivalent to time evolution backwards in time from Γ  under the strain 

rate history  !γ (t) , (t<0),  

 

  Pxy(−t,Γ, !γ (−t)) = exp[−iL(Γ, !γ (−t))t]Pxy(Γ) = −Pxy(t,Γ
(K ), !γ K (t))  (9.5.1) 

 
We note that if we do not assume that   !γ K (−t) = !γ (t)∀t , then there is no general 

method for generating conjugate trajectory segments.  This is because propagators 

with different strain rates do not commute and the inverse propagator must therefore 

retrace the strain rate history of the conjugate propagator but in inverse historical 

order. 

 We will now indicate in more detail, how to construct the conjugate segment, 

i(K), from an arbitrary phase space trajectory segment i [32].  The construction is 

illustrated in figure 9.5.1 for the case where the strain rate remains the same for the 

duration of the trajectory.  A trajectory of length τ is generated by solving the 

equations of motion.  The conjugate segment is then constructed by applying a K-map 

to the phase at the midpoint of the segment (t = τ/2), MKΓ (2) = Γ (5).  We then advance 

in time from the point (Γ (5)), to t = τ, by solving the equations of motion and also go 

backwards in time from the K-mapped point, t = τ/2, to t = 0.  A conjugate trajectory 

of length τ is thereby produced.  This construction has previously been described in 

more detail [32]. 
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Figure 9.5.1   Pxy  for trajectory segments from a simulation of 200 disks at T  = 1.0 
and n = 0.8.  A constant strain rate of γ = 1.0 is applied at t = 0.  The trajectory 
segment  Γ(1,3)  was obtained from a forward time simulation.  At t = 2, a K-map was 
applied to  Γ(2)  to give  Γ(5) .  Forward and reverse time simulations from this point 
give the trajectory segments  Γ(5,6)  and  Γ(5,4 ) , respectively.  If one inverts Pxy  in Pxy  = 
0 and inverts time about t = 2, one transforms the Pxy (t)  values for the antisegments 

 Γ(4,6)  into those for the conjugate segment  Γ(1,3) . 

 
Clearly, the mapped trajectory is a solution of the equations of motion for the system, 

and therefore it would eventually be observed from the ensemble of starting states.  

When the K-map is carried out at t = 0, the shear stress is inverted and equation 

(6.5.1) shows that  Pxy (τ / 2 + t,Γ) = −Pxy (τ / 2 − t,Γ
(K ) )  and similarly 

 Pxy (τ / 2 − t,Γ) = −Pxy (τ / 2 + t,Γ
(K ) ) , therefore for every point on the original 

trajectory there is a unique point on the mapped trajectory with opposite shear stress.  

The τ-averaged shear stress of the conjugate trajectory is opposite to that of the 
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original trajectory, that is P
xy,iK
(τ ) = −Pxy,i (τ ) .  Thus, if the original segment was a 

Second Law satisfying segment then the conjugate segment is a Second Law violating 

segment, and vice versa.  

 In a causal world, which is described by causal macroscopic constitutive 

relations such as (9.2.4), observed segments are overwhelmingly likely to be Second 

Law satisfying.  It is a simple matter to apply the arguments of §2.1 for the special 

case of ergostatted shear flow where a simple time reversal map cannot be used, and 

must be replaced by the K-map (see footnote 8). The condition of ergodic consistency 

has to be modified slightly to require: 

 
 f (StΓK ;0) ≠ 0,∀Γ ∈D .  (9.5.2) 

 
The result is the TFT given in (2.1.11).  
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9.6  SIMULATION RESULTS 

 
 We can demonstrate the relationships between the conjugate pairs of 

trajectories, the Second Law of Thermodynamics and causal and anticausal response 

using numerical simulations of the system described by equations (1.3.1) and (1.3.2).  

Figure 6.5.1 shows the response of Pxy  for a trajectory and its conjugate when a 

constant strain rate is applied.  The response was determined using nonequilibrium 

molecular dynamics simulations of 200 disks in two Cartesian dimensions.  The disks 

interact via the WCA potential [45], 

 

 φ(r) =
4(r−12 − r−6 )+1 r < 21/6

0 r > 21/6
⎧
⎨
⎪

⎩⎪
 (9.6.1) 

 
Shearing periodic boundary conditions were used to minimise boundary effects [16].  

The system was maintained at a constant kinetic temperature of T = 1.0 and the 

particle density was n = N/V = 0.8.  An initial phase was selected from an equilibrium 

distribution and a strain rate of γ = 1.0 was applied to the system at t = 0.  A trajectory 

segment was generated by simulating forward in time to t = 4.  The conjugate 

trajectory was constructed using the scheme describe above.  Examination of the 

trajectories shows that Pxy (τ + t)  for the Second Law satisfying trajectory is equal in 

magnitude but opposite in sign to Pxy (τ − t)  for the Second Law violating trajectory, 

where t is the time at which the K-map is applied (τ = 2).  These results therefore 

confirm the relationship between Pxy  of Second Law satisfying trajectories and 

Second Law violating conjugate trajectories given by equation (6.5.1).   
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The causality of the response is more clearly demonstrated in figure 6.6.1 where the 

response of Pxy   to a strain rate ramp is shown.  Pxy (t)  was averaged over a 100 

individual trajectories to reduce the fluctuations in the steady state and giving a 

partially ensemble averaged response  Pxy (t)
! .  In these simulations 56 disks were used.  

The initial phases of the trajectories shown in figure 6.6.1 were sampled from the 

equilibrium distribution at t = 0.   Pxy
!  is close to zero at equilibrium and decreases to 

near a steady state value after the field is applied.  After the strain rate is reduced,  Pxy
!  

increases towards a new steady state value.  

 The conjugate trajectories are shown in figure 9.6.1.  They were constructed 

as described above and translated in time to begin at t = -4.  At this time, the system is 

in an antisteady state and  Pxy
!  remains near its antisteady state value until just before 

the the strain rate is changed, when it increases towards a new antisteady state value.  

 In accord with the TFT, these response curves demonstrate that most initial 

phases (here all 100 randomly selected initial phases) satisfy the Second Law and 

most phases (again all 100 initial random phases) exhibit response curves that we 

would describe as having “causal” characteristics (i.e. the stress responds to prior 

rather than future, changes in the strain rate). Second Law violating conjugate 

trajectories respond to the step in the strain rate before it is made, so they are 

anticausal.  Close inspection of the graph reveals that at all points along pairs of 

conjugate trajectories, Pxy (t)trajectory = −Pxy (−t)conjugate trajectory  which follows from (9.5.1).   
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Figure 6.6.1b  Evans and Searles
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Figure 9.6.1   Pxy  (solid line) from nonequilibrium molecular dynamics simulations 
of 56 particles at T = 1.0 and n = 0.8 undergoing shear flow.  The dashed line gives 
the time-dependence of the strain rate.  In (a) Pxy  was determined using 1000 
trajectories whose initial phases were selected from an equilibrium distribution, and to 
which a two step strain rate was applied.  (b) shows Pxy  for their conjugate 
trajectories.  The conjugate trajectories were obtained by applying a K map to the 
phase of the trajectory at t = 2, simulating forward and backward in time from this 
point and translating in time so that the conjugate trajectory ends at t = 0.  Note that 
the strain rate history of the conjugate trajectory is reversed. 

 
 The system used in the simulations corresponds to that examined using the 

Maxwell model described in §9.4.  Figure 9.6.1 shows the response, determined by 

nonequilibrium molecular dynamics simulation, to the same two step strain rate ramp 

which was used to model the response shown in figure 9.4.1.  Comparison of these 
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response curves indicates that the system is reasonably well represented by the 

Maxwell model. 

 We should also note that if we generate an antitrajectory, that has negative 

average dissipation, such a trajectory will not continue indefinitely. Because the sum 

of it’s Lyapunov exponents is positive while the sum of exponents for the trajectory is 

negative, the antitrajectory is less mechanically stable than its conjugate trajectory. 

Because no numerically computed trajectory is exact, this numerical error is amplified 

by the Lyapunov instability and eventually the antitrajectory will decay into a 

trajectory with positive average dissipation.  

 If the error in any computed phase space position is δ  and if the particles 

have a dimensionless radius and average momentum of unity, the time required for 

the antitrajectory to decay is δ / λmin  where λmin  is the smallest (i.e. the most 

negative) Lyapunov exponent for the trajectory with positive average dissipation. This 

decay has nothing to do with why the Second “Law” is satisfied. The error δ  is not a 

material property. In an electrical circuit the Second “Law” is satisfied immediately 

the voltage Fe , is applied. In fact the initial rate of increase in the electrical current 

desnsity J , is given by an equilibrium fluctuation formula which has nothing to do 

with noise of errors, or Lyapunov instability: lim
t→0+

d J(t) dt = −βV J(0− )2
eq
Fe . 

 One might have thought that the instability of the antitrajectory would be 

very strong and the slope d J / dt , when the current crosses zero, would be very 

large. In fact this is not so and the crossing slope is typically much less than the initial 

slope caused by applying the voltage to the system which was at equilibrium at time 

zero! 
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9.7 SUMMARY AND CONCLUSION 

 
 As we have seen throughout this book, it is dissipation and not phase space 

compression, entropy or entropy production that features in the Fluctuation, 

Dissipation and Relaxation Theorems. Each of these theorems is exact for systems of 

arbitrary size and arbitrarily near or far from equilibrium. It used to be said that for 

nonequilibrium systems virtually no exact results are known.  This is most definitely 

not the case today. 

 At the end of this book we are now in a position to identify the key quantity 

that facilitates the entire exposition. Dissipation dominates the theory. Although it 

was originally defined to give the probability ratios of observing in the same initial 

ensemble, sets of trajectories and their conjugate anti-trajectories, this definition 

(3.1.2) also involves a balance between energy change and phase space volume 

(6.3.4). This is particularly obvious in equilibrating systems (5.4.10).  By loosing a 

certain quantity of heat from an otherwise Hamiltonian system, the system also gives 

up a certain amount of phase space. The ratio of heat loss to phase space expansion is 

given by kBT  the reciprocal of the integration factor for the heat appearing in the 

Clausius Inequality. 

 This quantity kBT  is also involves the equilibrium thermodynamic 

temperature the nonequilibrium system will relax towards if any dissipative field is set 

to zero immediately, and the entire system is allowed to relax towards equilibrium. 

This underlying equilibrium temperature is another key element of our theory. 

 The Fluctuation Theorems are proved by directly exploiting the time reversal 

symmetry of the dynamics. Time reversed sets of trajectories and antitrajectories are 

actually exploited to prove the theorem. Indeed is systems where these conjugate sets 
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do not exist, the fluctuation relations are not valid – ergodic consistency has broken 

down. Indeed the theorems are so powerful and general, precisely because their proofs 

make so few assumptions. 

 The other feature of our thesis is the minor role played by entropy. Indeed 

entropy was only mentioned for systems at equilibrium (§5.2,4).  Indeed since Gibbs’ 

Second Paradox was announced (that entropy is preserved by Hamiltonian dynamics), 

entropy has been problematic away from equilibrium.  Our thesis is that it is 

unnecessary to consider entropy, except for equilibrium systems where dissipation on 

the other hand, is identically zero. Entropy and dissipation are thus seen to have 

perfectly complementary roles. 

 It seems astonishing that 176 years after Clausius made his famous remarks:  

“The energy of the Universe is constant. The entropy of the Universe tends to a 

maximum.” that we have now come to such a different point of view. The ubiquity of 

Clausius’ view is also even more astonishing because of the criticisms of his 

arguments that were already made in the late 19th century. 

 The energy and the entropy are both constants of the motion but on average, 

the time integrated dissipation increases until at sufficiently late times in any isolated 

system it is constant. We have also at last come to realize the fundamental role played 

by Causality in physics. The so-called laws of physics are by themselves insufficient 

to predict what goes on in the Universe. Those laws must be supplemented with the 

Axiom of Causality in order to predict the outcomes of experiments. This Axiom is so 

natural that physicists almost always fail to realize that it is in fact an assumption and 

that an alternative possibility is logically possible. 

 This lack of recognition is however, precisely why the proof of the “laws” of 

thermodynamics had to wait so long. 

 


